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Modeling nonlinear electromechanical behavior of shocked silicon carbide
J. D. Claytona�

Impact Physics, US Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005-5066, USA

�Received 31 July 2009; accepted 3 December 2009; published online 14 January 2010�

A model is developed for anisotropic ceramic crystals undergoing potentially large deformations
that can occur under significant pressures or high temperatures. The model is applied to describe
silicon carbide �SiC�, with a focus on �-SiC, specifically hexagonal polytype 6H. Incorporated in
the description are nonlinear anisotropic thermoelasticity, electrostriction, and piezoelectricity. The
response of single crystals of �-SiC of various orientations subjected to one-dimensional shock
loading is modeled for open- and short-circuit boundary conditions. The influences of elastic and
electromechanical nonlinearity and anisotropy on the response to impact are quantified. For elastic
axial compressive strains less than 0.1, piezoelectricity, electrostriction, and thermal expansion have
a negligible influence on the mechanical �stress� response, but the influences of nonlinear elasticity
�third-order elastic constants� and anisotropy are not insignificant. The model is extended to
incorporate inelastic deformation and lattice defects. Addressed are Shockley partial dislocations on
the basal plane and edge dislocation loops on the prism plane, dilatation from point defects and
elastic fields of dislocation lines, and cleavage fracture. The results suggest that electric current
generated in shock-loaded �-SiC crystals of certain orientations could affect the dislocation mobility
and hence the yield strength at high pressure. �doi:10.1063/1.3277030�

I. INTRODUCTION

Silicon carbide is a ceramic material used in a number of
structural, industrial, and electronics applications. Silicon
carbide features high hardness1 �Vickers hardness
�22 GPa�, high melting point2 ��3100 K�, and high elastic
stiffness3 �bulk modulus �220 GPa�. High purity single
crystals of SiC are of interest for use as anvils in high-
pressure research and windows for optical spectroscopy and
x-ray diffraction.1,4 Silicon carbide is a semiconductor with a
wide band gap5 of 2.39–3.33 eV.

Over 200 structural polytypes of SiC crystals are known
to exist.6,7 A SiC polytype is represented by the number of
Si–C double layers in its unit cell, with an appended C, H, or
R denoting a cubic, hexagonal, or rhombohedral crystal sys-
tem. Cubic polytypes are classified as �-SiC; hexagonal and
rhombohedral polytypes are labeled �-SiC. The common cu-
bic polytype is 3C-SiC, exhibiting the sphalerite or zinc
blende crystal structure. Technologically relevant polytypes
of hexagonal SiC include 2H �wurtzite structure�, 4H, and
6H, while common rhombohedral polytypes include 9R,
12R, and 15R. Hexagonal � polytype 6H-SiC is the focus of
the present investigation; crystals of 6H-SiC are often re-
ferred to as moissanite. Industrial polycrystalline ceramics
such as SiC–B and SiC–N are thought to consist primarily of
6H-SiC,8–10 though fractions of other polytypes may be
present.

Polytype 6H-SiC is noncentrosymmetric, piezoelectric,
and can exhibit spontaneous polarity.11 Phase transforma-
tions between cubic and hexagonal polytypes at ambient
pressure occur at temperatures in excess of 1800 K.12 Phase
transformations at lower ambient temperatures are thought to
occur at very high pressures on the order of 100 GPa,13

though fractional increases in 6H-SiC grains relative to other
polytypes have been observed to occur at somewhat lower
compressive stresses ��19–32 GPa� in polycrystalline SiC
subject to ballistic impact.10 Basal slip of edge dislocations
in hexagonal polytypes is the dominant mechanism of plastic
deformation,5 with dislocation mobility dependent on tem-
perature and electric current or bias voltage.14,15 Shockley
partial dislocations bordering intrinsic stacking faults are
thought to be most relevant in hexagonal SiC,5,16 with mo-
bility of leading partials exceeding that of trailing partials at
low temperatures,17 supporting a tendency for plasticity to be
accompanied by generation of large numbers of stacking
faults. Twinning observed in �-SiC �Ref. 18� does not appear
to be an important mechanism in hexagonal polytypes, ex-
cept at high temperatures and pressures wherein phase trans-
formations occur. Point defects such as Si and C
vacancies6,10 and interstitials19 may affect mechanical and
electrical properties. Primary cleavage planes are of basal
and prismatic orientations; single crystals of hexagonal SiC
have been reported less resistant to fracture during indenta-
tion experiments than their polycrystalline counterparts.20

The present work addresses nonlinear behavior of single
crystals of 6H-SiC. Models incorporating geometric nonlin-
earity �finite deformations� and material nonlinearity �higher-
order elastic constants� are needed to interpret results of
shock physics experiments on anisotropic ceramic single
crystals.21,22 Because 6H-SiC crystals are piezoelectric, elec-
tromechanical behavior should be addressed.23–25 The impor-
tance, or lack thereof, of electromechanical forces �e.g., pi-
ezoelectricity and electrostriction� on the response of single
crystals of �-SiC deformed in planar impact under various
electrical boundary conditions, to the author’s knowledge,
has remained undocumented prior to the present study.a�Electronic mail: jclayton@arl.army.mil.
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The results of shock physics experiments �e.g., plate im-
pact or explosive loading� on single crystals of 6H-SiC have
not been reported in literature, to the author’s knowledge.
Experimental measurements of anisotropic second-order
elastic constants of 6H-SiC are available,3,26 but pressure
derivatives of second-order coefficients have only been esti-
mated theoretically.27 Dielectric permittivity, piezoelectric
coefficients, and thermal conductivity are available from ex-
perimental and/or quantum mechanical studies.28–36 Shock
physics experiments on polycrystals of �-SiC have indicated
that SiC maintains significant strength above the Hugoniot
elastic limit �HEL� and suggest that deformation by disloca-
tion generation and motion may occur in SiC under high
confining pressures, even near room temperature.8,13,37 Large
dislocation densities have been measured in �-SiC subjected
to explosive shock loading.2 The occurrence of plasticity in
SiC has been noted in indentation experiments38 and atomis-
tic simulations.39

Zhang et al.40–42 developed a crystal plasticity model for
hexagonal SiC incorporating dislocation glide on basal
planes, possible slip on prism planes, and failure at amor-
phous regions in the vicinity of grain boundaries. Computa-
tional studies of Zhang et al.42 suggest that basal slip is more
viable than fracture when considering longitudinal and lat-
eral stress profiles measured in impact experiments on poly-
crystals. Nontextured polycrystals were addressed; hence,
electromechanical interactions were omitted in numerical
simulations.40–42 Isolated slip of leading partial dislocations
was not considered explicitly, nor were temperature effects
such as adiabatic heating, thermal expansion, and thermally
enhanced dislocation mobility. The present work will show
that, in the elastic regime, omission of thermal effects is a
reasonable assumption, though it may not always be in the
plastic regime if dissipated energy from dislocation glide is
substantial.

When considering polycrystals �randomly oriented
grains� whose overall response can be idealized as macro-
scopically isotropic and hence centrosymmetric, macro-
scopic piezoelectric effects will not be observed; thus, the
choice of electrical boundary conditions �e.g., open versus
closed circuit� would not be expected to affect the global
mechanical response or interpretation of mechanical data
such as stresses and pressures from static or impact experi-
ments. However, electromechanical effects could be impor-
tant for single crystals. Recent interest has emerged in high-
pressure behavior of single crystals of �-SiC for use in anvil
cells or window materials in high-pressure research.1,4 It is
hoped that the analysis, results, and compiled/computed
properties for �-SiC in the present paper may motivate and
guide future experiments on single crystals. The present
treatment of plasticity and lattice defects, whose structure
and mobility can be influenced by electrical conditions and
hence electromechanical properties, may also be of interest
for semiconductor applications.5,14–17

This paper is organized as follows. Section II describes a
general model for nonlinear electromechanical behavior of
noncentrosymmetric elastic dielectric single crystals. The
model incorporates principles from nonlinear electromechan-
ics under the quasielectrostatic approximation.25,43–45 In Sec.

III, the model is specialized to describe single crystals of
�-SiC. Section IV describes model predictions of the re-
sponse of oriented single crystals to one-dimensional shock
loading. Section V extends the model to incorporate plastic
slip22,46 and influences of point and line defects,47,48 and as-
sesses predictions of material behavior to the extent permit-
ted by the availability of experimental data. Vectors and ten-
sors are expressed in indicial notation in Cartesian
coordinates, with summation implied over repeated sub-
scripted indices. Superposed �1 and • denote inversion and
the material time derivative, respectively.

II. NONLINEAR MODEL FOR ELASTIC DIELECTRICS

A. Kinematics

The reference configuration of a body is denoted B0, and
the spatial or current configuration of the body is denoted Bt.
Let xa=xa�XA , t� denote spatial coordinates that depend on
reference coordinates XA of a material particle and time t. In
regions where spatial positions are differentiable, the defor-
mation gradient and its inverse are

FaA�XA,t� = �Axa, FAa
−1�xa,t� = �aXA, �1�

where �A� · �=�� · � /�XA=FaA�a� · � and �a� · �=�� · � /�xa

=FAa
−1�A� · �. The spatial velocity gradient is

Lab = �bẋa = �bva = ḞaAFAb
−1 . �2�

Referential and spatial mass densities �0 and � are related by

�0 = �J, �̇ = − �J̇J−1 = − ��ava, �3�

where J=det�FaA�. Piola’s identities for the Jacobian deter-
minant and its inverse are

�A�JFAa
−1� = 0, �a�J−1FaA� = 0. �4�

Symmetric tensors of finite deformation and strain are intro-
duced, with �AB Kronecker’s delta

CAB = FaAFaB, CAB
−1 = FAa

−1FBa
−1, 2EAB = CAB − �AB. �5�

B. Electromechanics

The present description of dielectric solids follows a
quasielectrostatic approximation.25,43–45 In this treatment,
deemed appropriate for shock physics experiments on dielec-
tric crystals,23,24,49 finite material velocity and acceleration
are considered, but electromagnetic waves �e.g., optical phe-
nomena� are not. The treatment is restricted to nonmagnetic
materials with particle velocities small compared to light
speed in vacuum. Appropriate local, spatial forms of Max-
well’s equations are

�abc�bêc = 0, �ad̂a = �̂, � d̂a/�t = − ĵa, b̂a,a = 0, �6�

with êa the electric field, d̂a the electric displacement, and �̂

the free charge density. Electric current density is ĵa, and b̂a

is the magnetic flux density. The permutation tensor is �abc.
Relation �6� applies where electric field and electric displace-
ment are differentiable; jump conditions over an oriented
surface are
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�abc�êc�nb = 0, �d̂a�na = �̂ , �7�

where �̂ is the surface charge density, na is the unit normal
pointing from inside to outside a surface, and jump �a�=a+

−a− for quantity a, where superscripts + and � correspond
to the limiting value of a outside and inside the surface.
Denoting by �̂ the electrostatic potential, the electric field
satisfies

êa = − �a�̂ . �8�

Electric displacement, electric field, and spatial polarization
p̂a are related by

d̂a = �0êa + p̂a, �9�

with �0 the vacuum permittivity. “Material” or “Lagrangian”
measures of electric field, electric displacement, electric po-
larization, and free charge density in the reference configu-
ration are25,45,50,51

ÊA = FaAêa, D̂A = JFAa
−1d̂a, P̂A = FaAp̂a, �̂0 = J�̂ .

�10�

From Eqs. �1�, �4�, and �8�–�10�, material electrostatic quan-
tities obey

ÊA = − �A�̂, �AD̂A = �̂0, D̂A = JCAB
−1 ��0ÊB + P̂B� . �11�

The local balance of linear momentum in regions where field
variables are suitably differentiable is

�bTab + b̄a = �v̇a, �12�

where b̄a is the mechanical body force per unit spatial vol-
ume and Tab=�ab+ 	̂ab is the total stress tensor that is the
sum of mechanical or Cauchy stress �ab and Maxwell stress
	̂ab. Maxwell’s stress tensor is52,53

	̂ab = êap̂b + �0êaêb − ��0/2��êcêc��ab. �13�

The local balance of angular momentum is

Tab = Tba. �14�

Maxwell’s stress need not be continuous across coherent in-
terfaces. Traction boundary conditions are

Ta = ta
+ = ta

− − �	̂ab�nb, ta

 = �ab


 nb. �15�

In the classical linear theory of piezoelectricity,54 Maxwell
stress �13� is omitted and �ab=�ba.

C. Thermodynamics

The local form of the balance of energy for a dielectric
in the current configuration is45

�ė = �abLab − �aqa + �r + êaṗ̂a, �16�

where e is the internal energy per unit mass, qa is the heat
flux, and r is the scalar heat source. A local form of the
dissipation inequality is45,53

���̇ − �r + �aqa − �−1qa�a�  0, �17�

with � the entropy and � the absolute temperature. Defining
the Helmholtz free energy as �=e−�� and using Eqs. �16�
and �17� result to

�abLab + êaṗ̂a − ���̇ + �̇�� − �−1qa�a�  0. �18�

For an elastic dielectric, the free energy is assumed to exhibit
the general functional form

� = ��EAB, P̂A,�� , �19�

where strain EAB is defined in Eq. �5� and referential polar-

ization P̂A is defined in Eq. �10�. Following standard thermo-
dynamic procedures,25,44,53 the following constitutive laws
are obtained:45

� = − ��/�� , �20�

�AB = JFAa
−1�abFBb

−1 = �0
��

�EAB
+ JCAC

−1 P̂CCBD
−1 ÊD, �21�

êa = FaA�
��

� P̂A

, ÊA = J−1CAB�0
��

� P̂B

. �22�

The second Piola–Kirchhoff stress, referred to in shock phys-
ics literature23,24,50 as the thermodynamic tension, is �AB.
Assigning reference heat flux QA with Fourier conduction
law

QA = JFAa
−1qa = − KAB�B� , �23�

where KAB is the thermal conductivity, and using Eqs.
�20�–�22�, dissipation inequality �18� reduces to

�J��−1KAB�A��B�  0. �24�

Introducing the specific heat c per unit mass at fixed polar-
ization and fixed strain, thermal stress coefficients at fixed
polarization �AB, and pyroelectric coefficients at fixed strain
�A,

c =
�e

��
= − �

�2�

��2 , �AB = − �0
�2�

�� � EAB
, �A =

− �0
�2�

�� � P̂A

, �25�

and using Eqs. �4� and �19�, balance of energy �16� can be
expressed as a rate equation for the temperature55

�0c�̇ = �A�KAB�B�� + �0r − ���ABĖAB + �AṖ̂A� . �26�

III. 6H-SILICON CARBIDE: STRUCTURE AND
PHYSICAL PROPERTIES

A. Crystal structure

Structures of SiC polytypes are described by Wyckoff.7

Anisotropic physical properties can be explained in terms of
fractions of hexagonal and cubic layers in a given
polytype.31,56 Silicon carbide of polytype 6H belongs to
space group C6v

4 �C6mc� and point group 6mm, the latter in
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Laue group HI and the dihexagonal pyramidal class.26,50 The
stacking sequence of Si or C layers in the �0001� direction is
ABCACBABCACB. . ., meaning six layers each of Si and C
comprise a conventional unit cell �Fig. 1�. The lattice param-
eters at room temperature and atmospheric pressure are c
=1.512 nm and a=0.308 nm,36 leading to cell volume
�3a2c /2=0.124 nm3 and average atomic volume �0

=�3a2c /24=0.0103 nm3.

B. Thermoelectromechanical properties

A specific form of free energy �19� is written, on a per
unit reference volume basis, as

�0� = �1/2�CABCDEABECD + �1/6�CABCDEFEABECDEEF

+ �1/2��ABP̂AP̂B + �ABCP̂AEBC

+ �1/2��ABCDP̂AP̂BECD − �ABEAB��

− �0c� ln��/�0� . �27�

Temperature change from the reference state is ��=�−�0.
Consider a coordinate system with an orthonormal basis

�i , j ,k�, where i is along basis vector a and direction �1̄21̄0�,
j is along �1̄010�, and k is along c and direction �0001�,
following the IRE standard54 and Fig. 1. Properties corre-
sponding to Eq. �27� in this coordinate system are listed in
Tables I and II. Voigt’s notation,50 with symmetric indicial
pairs 11→1, 22→2, 33→3, 23→4, 13→5, and 12→6, is
used in the tables for some coefficients. Energy �27� is writ-
ten in a continuum sense and is representative of a volume of
crystal containing a large number of unit cells. Inner dis-

placements of Si or C atoms belonging to different primitive
sublattices that affect the measured properties19,35 are implic-
itly included in material coefficients entering Eq. �27�.

Isothermal second- and third-order elastic constants at
fixed polarization in full index notation are

CABCD = �0	 �2�

�EAB � ECD
	

B0

, CABCDEF

= �0	 �3�

�EAB � ECD � EEF
	

B0

, �28�

where partial derivatives are evaluated at a fixed reference
state B0 characterized by


B0:� = �0, FaA = �aA, EAB = 0, P̂A = 0, � = �0� .

�29�

Hexagonal crystals of Laue group HI exhibit five indepen-
dent second-order and ten independent third-order elastic
constants.50 The former are available from experiments;3,26

the latter apparently are not. However, pressure derivatives
of second-order elastic coefficients are known from an
atomic force model;27,57 these are listed in Table II. Isother-

FIG. 1. Structure of 6H-SiC and crystallographic coordinate system.

TABLE I. Thermophysical properties.

Parameter Value Definition Ref.

�0 3210 kg /m3 Mass density 28
cp 652 J/kg K Isobaric specific heat 63
�11 3.4�10−6 /K Thermal expansion coefficients 31
�33 3.2�10−6 /K
K11 390 W/mK Thermal conductivity 30
K33 370 W/mK
�D 1200 K Debye temperature 28
�M 3375 K Melting temperature 2

TABLE II. Elastic, piezoelectric, and dielectric properties.

Parameter Value Definition Ref.

C11 501
6 GPa Second-order
elastic constants

3
C12 112
5 GPa
C13 52
9 GPa
C33 549
3 GPa
C44 161
4 GPa

�C11 /�p 3.8 Pressure derivatives of
second-order

elastic coefficients

27
�C12 /�p 4.0
�C13 /�p 4.0
�C33 /�p 3.8
�C44 /�p �0.2

� 194 GPa Isotropic elastic
constants

5
� 0.161 5
B 222 GPa Equation �30�

230 GPa 59

B�=�B /�p 4.0 Pressure derivative
of bulk modulus

59
3.1
0.3 60

3.9 Equation �30�
2.5 B�=2�+1 /3 �Ref. 61�

��=�� /�p 3.4
Pressure derivative of

shear modulus Isotropic, fixed �

e15 −0.198 C /m2 Piezoelectric
constants

35
e31 −0.200 C /m2

e33 0.398 C /m2

�11 9.66 Static dielectric
permittivity

29
�33 10.03

��11 /�p �0.0218/GPa Pressure derivatives
of permittivity

34
��33 /�p �0.0232/GPa

013520-4 J. D. Clayton J. Appl. Phys. 107, 013520 �2010�



mal bulk modulus B at the reference state is defined as58

B = 	���p

��
	

B0

= − 	�J
�p

�J
	

B0

=
C33�C11 + C12� − 2�C13�2

C11 + C12 − 4C13 + 2C33
, �30�

where CAB are second-order elastic constants of the first of
Eq. �28� written in Voigt’s notation. Third-order elastic con-
stants can be approximated from pressure derivatives of
second-order coefficients via

CABCDEF = −
B

3�	 �CABCD

�p
	

B0

�EF + 	 �CCDEF

�p
	

B0

�AB

+ 	 �CEFAB

�p
	

B0

�CD , �31�

an approximation that omits dependence of elastic coeffi-
cients on shear strains. Isotropic values5 �Voigt averages� of
shear modulus � and Poisson’s ratio � are listed in Table II
for polycrystalline 6H-SiC. The temperature dependence of
elastic coefficients of SiC is thought to be weak56 for �
�800 K and is omitted in Eq. �27�. The pressure derivatives
of isotropic elastic coefficients at the reference state are also
listed, following polycrystalline experiments59,60 or theoreti-
cal predictions.61

Isothermal second-order dielectric coefficients and pi-
ezoelectric coefficients are, respectively,

�AB = �0	 �2�

� P̂A � P̂B

	
B0

, �ABC = �0	 �2�

� P̂A � EBC

	
B0

.

�32�

For the crystal class of hexagonal SiC, the first of Eq. �32�
consists of two independent components ��11 and �33� while
the second consists of three ��113=�15, �311=�31, and �333

=�33 in full and Voigt notations, respectively�. Usual dielec-
tric constants �dimensionless isothermal permittivity at con-
stant strain� are

�AB = 	 1

�0

�D̂A

�ÊB

	
B0

= �AB + �0
−1�AB

−1 , �AB = �0
−1��AB

− �AB�−1. �33�

The relationships between usual isothermal piezoelectric co-
efficients eABC defined as energy derivatives with respect to
electric field25,35,43,54 and those in Eq. �32� are62

eABC = − 	 ��BC

�ÊA

	
�

= − �AD
−1 �DBC, �ABC = − �ADeDBC.

�34�

Pyroelectricity is not considered. Third-order electrome-
chanical �electrostriction� coefficients are

�ABCD = �0	 �3�

� P̂A � P̂B � ECD

	
B0

, �35�

and are related to pressure derivatives of permittivity as fol-
lows if dependence on shear strain is omitted:

�ABEE = 	3B�0

4

��CD

�p
	

B0

�AC�BD + �0�AC�BC − �AB.

�36�

The number of independent coefficients of �ABCD is six for
the crystal class of 6H-SiC.50 The variation of permittivity
with pressure is known,34 providing two ��11 and �33� of the
six coefficients via

�ABCD = �AB�CD, �ABCD�CD = 3�AB. �37�

Second-order thermal stress coefficients at constant po-
larization are

�AB�B0
= − �0	 �2�

�� � EAB
	

B0

= CABCD�CD, �38�

where �CD is the tensor of thermal expansion at the reference
state with independent coefficients �11 and �33. Gruneisen
numbers and scalar Gruneisen parameter are

�AB = �AB/��0c�, � = �AAB/��0c� , �39�

where the specific heat at constant volume in the reference
state is

c�B0
= − ���2�/��2��B0

= cp − ��AA�2B�0/�0, �40�

with cp the isobaric specific heat. In Eq. �27�, a constant
specific heat is used for small temperature variations from
the reference state.63 Thermal conductivities �K11 and K33�
listed in Table I are values at room temperature.30 At room
temperature, c /cp=0.997. Since the ratio of isothermal to
isentropic bulk modulus B /B�=c /cp�1.0 for ��1500 K,33

differences between isentropic and isothermal bulk moduli
are omitted in regime ���0��D. The differences between
isentropic and isothermal second-order elastic constants are50

CABCD
� − CABCD = ��0/c��AB�CD. �41�

Nonzero differences in Eq. �41� for 6H-SiC in Voigt’s nota-
tion, C11

� −C11=0.76 GPa, C33
� −C33=0.63 GPa, and C13

�

−C13=0.69 GPa, are smaller than the margins of experimen-
tal uncertainty for measured isentropic second-order elastic
constants3 and hence are omitted.

The following differences exist among isothermal elastic
constants measured at fixed polarization CABCD, at fixed elec-

tric field CABCD
Ê , and at fixed electric displacement CABCD

D̂ as
follows:50,62

CABCD
Ê − CABCD = − �EAB�EF

−1�FCD, CABCD
Ê − CABCD

D̂

= − eEAB�0
−1�EF

−1 eFCD. �42�

The largest differences among nonzero elastic constants are

C33
Ê −C33=−1.98 GPa, C33

Ê −C33
D̂ =−1.78 GPa, and C33

D̂ −C33

=−0.20 GPa. Since these differences are small and are
within limits of experimental accuracy,3 they are omitted in
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the forthcoming analysis. The properties listed in Tables I
and II correspond to 6H-SiC, with two exceptions. The pres-
sure derivatives of elastic coefficients in Eq. �31� correspond
to 2H-SiC,27 and the pressure derivatives of permittivity in
Eq. �36� correspond to 4H-SiC,34 since the values for
6H-SiC were not available. Such pressure derivatives are
evaluated at reference state �29�.

Using Eq. �27� and the thermodynamic results of Sec.
II C, useful algebraic expressions can be derived. The mate-
rial electric field in terms of strain and polarization is, from
Eq. �22�,

ÊA = J−1CAB�BCDECD + J−1CAB��BC + �BCDEEDE�P̂C.

�43�

The material electric displacement in terms of strain and po-
larization is then obtained from Eq. �11� as

D̂A = ��0�AB + JCAB
−1 + �0�ABEFEEF�P̂B + �0�ADEEDE.

�44�

Inverting Eq. �43�, the material polarization in terms of strain
and electric field is

P̂C = ��BC + �BCDEEDE�−1�JCBA
−1 ÊA − �BFGEFG� , �45�

or in terms of strain and electric displacement, after inverting
Eq. �44�,

P̂B = ��0�AB + JCAB
−1 + �0�ABEFEEF�−1�D̂A − �0�ADEEDE� .

�46�

The electric displacement in terms of strain and electric field
is, combining Eqs. �44� and �46�,

D̂A = �̄ADÊD + ēADEEDE = �̄ADÊD + P̄A, �47�

where �̄AD is the strain-dependent permittivity, ēADE are the

strain-dependent piezoelectric coefficients, and P̄A is the
strain-induced part of the polarization that does not depend
on electric field. The thermodynamic tension of Eq. �21� is,
using Eqs. �27� and �37�,

�AB = CABCDECD + �1/2�CABCDEFECDEEF

+ �1/2��CD�ABP̂CP̂D + �CABP̂C − �AB��

+ CAC
−1 P̂C��BDP̂D + �BDEEDE + �BDP̂DEFF� . �48�

The symmetric total stress in momentum balance �12� is ob-
tained by combining Eqs. �43� and �48� in the sum

Tab = J−1FaA�ABFbB + FAa
−1�ÊAP̂B + �0ÊAÊB�FBb

−1

− ��0/2�CAB
−1 ÊAÊB�ab. �49�

IV. SHOCK RESPONSE OF 6H-SIC

A. One-dimensional analysis

Consider a disk of piezoelectric crystal of initial thick-
ness l0, as shown in Fig. 2. The disk is subjected to planar
impact along face X=0, while face X= l0 remains fixed until
the arrival of the stress wave at t= t0. Impact loading imparts

face X=0 with particle velocity v, and the absolute velocity
of the shock referred to the reference configuration is V. Both
v and V are assumed constant in time and one dimensional.
Considered is the response for the first transit of the shock
through the disk; i.e., 0� t� t0.

1. Governing equations

In one dimension, denote the material coordinate by X
and spatial coordinate by x�X , t�. Displacement is u=x−X. In
region 2 �i.e., behind the shock� deformation gradient F and
velocity v satisfy

F = �x/�X = 1 + �u/�X, v = �x/�t = �u/�t . �50�

Jacobian in Eq. �3� and its inverse are simply

J = F, J−1 = F−1. �51�

In a material initially unstrained and at rest, shock velocity
V�0 and particle velocity 0�v�V are related by the con-
tinuity equations23,49,50

v = − V��u/�X� = V�, � = v/V = − �u/�X = 1 − F . �52�

The X-component, and the only nonzero component, of finite
strain measure �5� is

E = �F2 − 1�/2 = ��u/�X�2/2 + �u/�X = �2/2 − � . �53�

The components of Lagrangian electric field and electric dis-
placement of Eq. �10� in the X-direction are

Ē = Fê = − ��̂/�X, D̄ = JF−1d̂ = d̂ . �54�

Local governing equations of Sec. II apply within regions 1
and 2 but not across the shock. In the one-dimensional case,
global balance laws are written as follows.43,49 Let X1 and X2

denote the coordinates of any two material points. The speci-
men is idealized as a perfect dielectric with no free charges
��̂0=0 in Eq. �11��, and body forces besides those associated

with Maxwell’s stress are absent �b̄a=0 in Eq. �12��. The

FIG. 2. One-dimensional shock-loaded piezoelectric disk of initial thickness
l0 �Refs. 23 and 24�. Shock wave travels from left to right at velocity V;
particle velocity is v. Wave divides disk into a shocked region of length l2�t�
and an unshocked region of length l1�t�. Effective dielectric permittivity and

material electric field in regions 1 and 2 are ��̄1 , Ē1�t�� and ��̄2�t� , Ē2�t��.
Compressive strain is �, and P̄A are strain-induced components of polariza-
tion. Measured displacement current is I�t�, with R the electrical resistance.
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global balance of linear momentum is

T�X2,t� − T�X1,t� =
d

dt
�

X1

X2

�0vdX , �55�

where T�X , t� is the component of the total stress of Eqs. �12�
and �49� normal to the X-direction. The one-dimensional
form of Gauss’s law is

D̄�X2,t� − D̄�X1,t� = 0. �56�

For all regions of the specimen except across the shock, the
local forms of Eqs. �55� and �56� are

�T/�X = �0��v/�t�, � D̄/�X = J��D̄/�x� = 0. �57�

The third of Maxwell’s relations in Eq. �6� becomes, in one
dimension,

I/A = − ĵ = � d̂/�t = dD̄/dt , �58�

where I�t� is the electric displacement current and A is the
area of the collecting electrode at X= l0. The gradient of Eq.
�58�, with Eq. �57�, leads to the independence of current
density with position; i.e.,

��I/A�/�X = ���D̄/�X�/�t = 0. �59�

The voltage difference across the electrodes in Fig. 2 is

��t� = �
0

l0

���̂/�X�dX = − �
0

l0

ĒdX = RI . �60�

Across the shock, the following jump conditions can be de-
duced from Eqs. �55� and �56�:

T+ − T− = − �0V�v+ − v_�, D̄+ − D̄− = 0, �61�

where + and � denote the values of a quantity immediately
in front of and behind the shock. When the region in front of
the shock �region 1� is unstressed and stationary, the first of
Eq. �61� reduces to23,24

T = − �0Vv , �62�

where T and v are the normal stress and particle velocity in
region 2. The second of Eq. �61� ensures that the surface
charge density �̂ of Eq. �7� vanishes at the shock. Together
the second of Eqs. �57� and �61� imply

D̄ = D̄�t� �0 � X � l0� . �63�

The electric field is one dimensional; i.e., all components of

ÊA besides Ê1= Ē vanish identically when X1→X. Neither
the stress state nor the polarization is necessarily one dimen-
sional. Letting X1→X, the axial components of thermody-
namic tension and stress in region 2 become, from Eqs. �48�
and �49�,

� = C1111E + �C111111/2�E2 + ��CD/2�P̂CP̂D + �C11P̂C

− �11�� + J−2P̂1��1DP̂D + �111E + �1DP̂DE� , �64�

T = J� + J−2Ē�P̂1 + �0Ē/2� . �65�

When X1 corresponds to a different system than that used to
define material coefficients, then coefficients must be trans-
formed to the laboratory frame. Care must be taken since
piezoelectric coefficients can change sign upon reversal of
loading direction. The temperature rise assuming adiabatic
conditions is obtained from Eq. �26�: ��=�0�exp�−�11E�
−1�, where �11 is Gruneisen’s number in Eq. �39�. In a
physical experiment, particle velocity v is imposed; e.g., v is
half the impact velocity if the striking material in a symmet-
ric plate impact experiment is identical to that of the
specimen.23 Polarization, electric field, electric displacement,
voltage difference, and current depend on the choice of elec-
trical boundary conditions, in particular, the choice of resis-
tance R in Fig. 2.

2. Voltage mode

Consider open circuit or voltage mode, where R→� and
I→0 in Fig. 2 such that product RI remains finite. At t=0,
assume polarization, electric field, and electric displacement

vanish for 0�X� l0. Then Eqs. �58� and �63� imply D̄=0
throughout the specimen for the duration of the test. Relation
�47� becomes

D̄ = 0 = �̄1Ē1 = �̄2Ē2 + P̄ ⇔ P̄ = − �̄2Ē2, �66�

where P̄ is the X-component of strain-induced polarization

P̄A of Eq. �47� in region 2, �̄2�E� is the XX-component of the

effective permittivity �̄AB in region 2, and Ē2 is the electric
field in region 2, as illustrated in Fig. 2. Electric field and
polarization remain zero in region 1, which exhibits constant
permittivity �̄1 throughout the experiment. No strain is in-
duced in region 1. Strain, electric field, and polarization are
constant in time but are generally nonzero within region 2.
Assume that deformation gradient F is imposed in region 2
by to-be-determined magnitudes of particle velocity v and
shock velocity V. Inverting Eq. �66� for the electric field in

region 2, which will simply be labeled Ē,

Ē = Ē2 = − P̄/�̄2 = − �ē2/�̄2�E , �67�

with ē2�E� the strain-dependent XXX-component of piezo-
electric coefficient ēABC of Eq. �47� in region 2. With the
electric field in region 2 known from Eq. �67�, the total po-
larization vector in region 2, from Eq. �45�, is

P̂C = ��BC + �BCE�−1�JCB1
−1Ē − �B11E� . �68�

Expressions �67� and �68� can be substituted into Eqs. �48�
and �49� to obtain all stress components, including normal
stress T of Eq. �65�. The particle velocity and shock velocity
corresponding to compression �=1−F are

v = V�, V = �− T/��0�� , �69�

with T�0 for a compressive shock. In the linear elastic limit
and in the absence of electromechanical effects, Eq. �69�
reduces to V��C1111 /�0. The voltage difference across the
electrodes is43
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� = − �
0

l2

Ē2dX − �
l2

l1+l2

Ē1dX = �ē2/�̄2�El2, �70�

where instantaneous lengths of shocked and unshocked re-
gions are

l2 = �V − v�t, l1 = l0 − Vt . �71�

Wave transit time across the specimen is t0= l0 /V. The sign

of ē2 determines the signs of P̄, Ē, and �.

3. Current mode

Now consider short-circuit conditions, where R→0 in

Fig. 2. At any instant of time, electric fields Ē1 and Ē2 are
assumed spatially constant within respective regions 1 and 2
of the specimen. The electric potential difference is zero
across the electrodes, so Eq. �60� becomes23,24

0 = �
0

l2

Ē2dX + �
l2

l1+l2

Ē1dX = Ē2l2 + Ē1l1. �72�

Assuming for now that shock velocity V is constant, Eq. �71�
applies. Clearly Ē1 and Ē2 are both time dependent. The
compression of the piezoelectric specimen in shocked region

2 generates an electric field Ē2 in region 2, which in turn

must be counteracted by an electric field Ē1 generated in
region 1 ahead of the shock so that Eq. �72� is satisfied.
Noting from Eq. �63� that electric displacement is identical
in both regions,

D̄ = �̄1Ē1 = �̄2Ē2 + P̄ , �73�

where P̄ is the X-component of strain-induced polarization

P̄A in region 2 that depends on strain but is time independent
within region 2,

P̄ = ē2E . �74�

From Eqs. �72�–�74�, the time-dependent electric field in the

unshocked �Ē1� and shocked �Ē2� regions can be computed
in terms of strain E in the shocked region as

Ē1 = ��̄1 + �l1/l2��̄2�−1ē2E, Ē2 = − ��̄2 + �̄1�l2/l1��−1ē2E .

�75�

With the electric field now known, the total polarization vec-

tor in region 2, from Eq. �45� is, with Ē= Ē2,

P̂C = ��BC + �BCE�−1�JCB1
−1Ē − �B11E� . �76�

Relation �76� is then substituted into Eqs. �48� and �49� to
obtain stress components, including T of Eq. �65�. Particle
velocity and shock velocity corresponding to compression
�=1−F are obtained from Eqs. �52� and �62� as follows:

v = V�, V = �− T/��0�� , �77�

noting that T�0. Displacement current �58� for the open
interval 0� t� t0 is

I

A
=

dD̄

dt
�

ē2��̄2/�̄1��1 − v/V���2/2 − ��
��1 − v/V��t/t0� + ��̄2/�̄1��1 − t/t0��2 , �78�

where Eq. �71� has been used, assuming V is constant.23,24

Since the electric field is time dependent, axial stress T will
not be strictly constant, implying that if a constant particle
velocity is imposed, then strain � and shock velocity V can-
not both be constant for the duration of the experiment.
Hence, the final expression in Eq. �78� is only approximate.
A correction accounts for secondary strain generated in re-

gion 1 of the specimen as a result of induced electric field Ē1;
Graham23,24 labeled this effect “electromechanical coupling.”
This secondary strain affects the measured displacement cur-
rent. The corrected current, derived by Stuetzer64 and ac-
counting for secondary strain in region 1, is

I

A
=

ē2��̄2/�̄1��1 − v/V���2/2 − ��
t0��1 − v/V��t/t0� + ��̄2/�̄1��1 − t/t0��2exp�k2t/t0� ,

�79�

where t0= l0 /V, acoustic impedances of electrodes are as-
sumed to match, and for loading along X=X1,

k2 = �e111�2/��0�11C1111
D̂ � . �80�

At the instant immediately after impact �t=0+�, l2=0, Ē1=0,

Ē2=−ē2E / �̄2, and

I/A = ē2�1 − v/V���2/2 − ��/�t0��̄2/�̄1�� . �81�

Comparison with Eq. �67� indicates that electric field and
stress in region 2 at t=0+ are the same as those under open-
circuit conditions. At the instant the stress wave reaches the

end of the specimen, l1=0, Ē2=0, Ē1= ē2E / �̄1, and

I/A = ē2��̄2/�̄1���2/2 − ��exp�k2�/�t0�1 − v/V�� . �82�

Dividing Eq. �82� by Eq. �81�, the ratio of permittivity in
strained and unstrained regions can be found by solving

I�t0
−�/I�0+� = ���̄2/�̄1�/�1 − v/V��2exp�k2� . �83�

In the application that follows, axial stresses T computed
under conditions �81� and �82� are nearly identical. Hence,
particle and shock velocities corresponding to a particular
deformation �F, J, E, or �� are constant in region 2 for the
purposes of calculation.

B. Model predictions for 6H-SiC

It is assumed for the present calculations that deforma-
tion is elastic and homogeneous in the shocked region. The
duration of loading is longer than t0; i.e., release of the im-
pacted edge of the specimen is not considered. Consideration
of lattice defects, plastic yielding, and fracture is deferred to
Sec. V. It is also assumed that �-SiC behaves as a dielectric
with no free charges. Presumably, above some threshold im-
pact velocity, this assumption may be inappropriate. The
electric field generated in region 2 of the disk as a result of
the piezoelectric effect may be strong enough to induce di-
electric breakdown, as has been observed in quartz,65,66

which has a higher band gap and higher breakdown field
under ambient conditions:67 �9 eV and 13–15 MV/cm for
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SiO2 versus �3 eV and 2–4 MV/cm for 6H-SiC. When
breakdown occurs, free electrons can contribute to the cur-
rent, and the second of Eq. �57� does not apply.

Considered is a disk of thickness l0=6.35 mm, the same
dimension as quartz specimens considered by Graham et
al.68 Computed are responses for four different single crystal
orientations, loaded in axial compression over the range 0
���0.1 �i.e., 1�J0.9�, under both voltage and current
modes. For the Z-cut orientation, the shock wave is directed
along the X3-axis of Fig. 1, i.e., in the positive �0001� direc-
tion. In the �Z-cut orientation, the shock wave travels along
the −X3-axis of Fig. 1. A different electrical response results
for these two orientations �
Z-cut� because the sign of pi-
ezoelectric constant e33 is reversed upon rotation of the crys-
tal by 180° about an axis in the basal plane. In the X-cut
orientation, the wave travels in the X1-direction of Fig. 1, i.e.,

in the positive �1̄21̄0� direction. The rotated cut crystal is
equivalent to the Z-cut crystal rotated counterclockwise
about the X1-axis by an angle of 54.03°, with the shock then
propagating in the positive direction along the laboratory
X3-axis. The assumption that a wave remains planar in an
anisotropic crystal is most valid when the crystal is loaded
along certain directions.69 For each orientation considered
here, an elastic wave propagates in such a “pure mode” di-
rection dictated by second-order elastic constants of 6H-SiC.

Predicted material electric fields Ē1 and Ē2 of Eq. �72�
are shown in Fig. 3 for short-circuit �current mode� loading
with an impact velocity producing a compressive strain of
�=0.01. The results in Fig. 3 can be interpreted by consid-
ering Eq. �72�. The shock �stress� wave front is the surface of
discontinuity along the diagonal X / l0= t / t0. As the stress
wave propagates through the specimen, the magnitude of the
electric field behind the front decreases in conjunction with
an increase in length l2 of the stressed region. Simulta-
neously, the electric field ahead of the front increases in mag-
nitude in conjunction with a decrease in length l1. The alge-
braic sign of the electric field in each region is dictated by
the sign of piezoelectric coefficient ē2, which in turn depends
on the orientation of the crystal. Maugin43 presented theoret-
ical results for shock-loaded ferroelectric crystals of PZT
65/35 in a similar graphical format. The electric field for the
Z-cut specimen is shown in Fig. 3�a�; the field for the �Z-

cut specimen, not shown, is equal in magnitude but opposite
in sign to that shown in Fig. 3�a�. The electric field for the
rotated-cut specimen in Fig. 3�b� is similar to that of the
�Z-cut specimen, but smaller in magnitude by about a factor
of 3. In all cases, the maximum magnitude of the electric
field in the shocked region arises at the instant after impact
�t=0+�, and the maximum in the unshocked region arises at
t= t0

−. No electric field is generated in an impact experiment
on an X-cut specimen because e11=0. The spatial electric
field ê of Eq. �54� in the shocked region for voltage mode
loading is shown in Fig. 4 over a range of compressive
strains; recall from Eq. �81� that this is the same field that
would be generated at t=0+ under current mode loading. The
regime where dielectric breakdown would occur under am-
bient pressure is indicated;67 however, the electric field re-
quired for dielectric breakdown may depend on pressure, as
has been observed in quartz.65 The predictions in Figs. 3 and
4 are valid so long as the material response remains elastic;
however, yield via slip or fracture could occur prior to attain-
ment of strains on the order of 0.1, as discussed in Sec. V.

Normal stresses of Eq. �65� are shown in Fig. 5�a�. The
predictions shown for single crystals presume an adiabatic
elastic response under voltage mode conditions �equivalent
to the stress under current mode at t=0+�. The effects of
anisotropy are clear, with normal stress highest for Z-cut and
lowest for rotated-cut specimens. Single crystal stresses may
be overestimated in Fig. 5�a� if yielding occurs and the shear
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FIG. 3. �Color online� Predicted material electric field in �-SiC at 1% compression ��=0.01�: �a� Z-cut and �b� rotated cut.
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strength decreases relative to that of an elastic crystal. The
data from impact experiments on polycrystalline �-SiC are
shown for comparison; for J�0.96, yielding occurred in the
experiments.13,37,70 Hydrostatic pressure p=−�aa /3 is shown
in Fig. 5�b� under the same loading conditions. Predicted
pressure varies little with crystal orientation under uniaxial
compressive loading, and is similar to the results of Yuan et
al.,70 the latter following from the analysis of in situ mea-
surements, with electromagnetic velocity gauges, for impact-
loaded polycrystalline SiC–B.

While model predictions of pressure seem to agree most
closely with those of Yuan et al.,70 such predictions should
not be interpreted as an affirmation of greater accuracy of
one set of published experimental results over another. Yuan
et al.70 found that their analysis and data fit �their Eq. �10�,
reproduced here in Fig. 5�b�� closely agree to pressures up to
�15 GPa, with experimental results of Feng et al.37 ob-
tained using lateral manganin foil gauges on different speci-
mens of the same material loaded in plate impact �see Fig. 9
of Yuan et al.70�. The response of Bassett et al.,59 obtained
from static compression using a diamond anvil cell and x-ray
diffraction �to 68.4 GPa�, agrees closely with the experimen-
tal results of Amulele et al.71 obtained using ultrasonic mea-

surements �to 13.6 GPa� and x-ray measurements in a dia-
mond anvil cell �to 27 GPa�. The upper curve shown in Fig.
5�b�, i.e., that used explicitly by Bassett et al.,59 corresponds
to a Birch–Murnaghan equation of state �EOS� with bulk
modulus of 230.2 GPa and pressure derivative of bulk modu-
lus of 4. The curve of Yuan et al.70 was fitted by those au-
thors to impact data at up to �4% volumetric compression;
hence this curve represents an extrapolation to higher pres-
sures in Fig. 5�b�. The curve corresponding to Bassett et al.59

does not represent an extrapolation. Bassett et al.59 noted that
their static measurements indicated a stiffer response than the
shock measurements of Kipp and Grady.72 Differences in
experimental techniques �e.g., static versus dynamic� and
sample variations �e.g., second phases, defects, and porosity�
could account for differences among experimental results. A
more extensive survey of compression studies on polycrys-
talline SiC is given by Dandekar.9

Predictions for single crystals in Fig. 5 are calculated
using the finite strain anisotropic elasticity theory of Sec.
III B, with material properties obtained from independent
sources �Tables I and II�. In particular, if third-order elastic
constants entering the model are not accurate, or if fourth-
order elastic constants are important �e.g., as may be the case

TABLE III. Predicted shock response: Z-cut ��0001�� orientation.

Axial compression

Particle velocity, v
�km/s�

Axial stress magnitude, �T�
�GPa�

� J Open circuit Short circuit �t= t0
−� Breakdown �P̂A=0� Isothermal ��AB=0�

�CAB

�p
= 0

�AB=0

0.01 0.99 0.1303 5.4537 5.4362 5.4556 5.4474 5.4124 5.4537
0.02 0.98 0.2597 10.8238 10.7896 10.8274 10.8113 10.6618 10.8238
0.03 0.97 0.3880 16.1071 16.0567 16.1122 16.0884 15.7498 16.1070
0.04 0.96 0.5152 21.3003 21.2346 21.3068 21.2757 20.6781 21.3003
0.05 0.95 0.6413 26.4006 26.3202 26.4083 26.3702 25.4483 26.4006
0.06 0.94 0.7662 31.4051 31.3106 31.4138 31.3690 30.0621 31.4051
0.07 0.93 0.8898 36.3111 36.2030 36.3206 36.2694 34.5211 36.3110
0.08 0.92 1.0123 41.1158 40.9949 41.1260 41.0688 38.8270 41.1158
0.09 0.91 1.1334 45.8169 45.6836 45.8277 45.7645 42.9813 45.8168
0.10 0.90 1.2532 50.4119 50.2667 50.4230 50.3544 46.9858 50.4118
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FIG. 5. Normal stress �a� and Cauchy pressure �b� in �-SiC under voltage mode loading. Stress and pressure for �Z-cut specimen �not shown� are identical
to those of Z-cut. The marked points in �a� correspond to experiments on polycrystalline SiC–B from Refs. 13, 37, and 70. The curves in �b� from Refs. 59
and 70 correspond to the results obtained from the experiments on polycrystalline �-SiC.
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in shocked quartz23�, the finite strain elasticity model could
underpredict axial stress and pressure at large compressive
strains. It is also noted that single crystal predictions do not
reflect porosity, grain boundaries, and other defects present
in polycrystalline samples. Future impact experiments on
single crystals of 6H-SiC could provide a check of the mod-
eling results, could enable evaluation of accuracy and appli-
cability of third-order elastic constants used here �from
atomic modeling27�, and could suggest whether inclusion of
fourth-order elastic constants, whose values are presently un-
known for �-SiC single crystals, would improve the predic-
tions of the present model.

Tables III–V list the predicted axial stresses versus com-
pressive strain for specimens of Z-cut, X-cut, and rotated-cut
orientations, respectively, in strain increments of 1%.
Stresses for the �Z-cut orientation are identical to those for
Z-cut orientation in Table III. Particle velocities required to
achieve tabulated compressions under open-circuit mode are
listed. Listed in column 5 of each table is axial stress for
current mode loading at the instant stress wave transit
through the disk is complete. The stresses in column 6 cor-
respond to dielectric breakdown under voltage mode, in
which case shocked SiC is idealized as a conductor: null
polarization, null electric field, and null electric displacement

for open-circuit loading. The results in column 6 are what
would be obtained if all piezoelectric and electrostriction co-
efficients were set identically to zero. Column 7 corresponds
to an isothermal, as opposed to adiabatic, event, or equiva-
lently to stress observed under null thermal expansion. The
results in column 8 correspond to null third-order elastic con-
stants, i.e., linear elasticity. The results in column 9 corre-
spond to null electrostriction. From the results in Tables
III–V, electromechanical effects and thermal effects provide
a negligible influence on the axial stress for compressive
strains up to �=0.1. For example, from Table III, the stress
difference between open- and short-circuit conditions is at
most 0.4%, justifying the assumption of constant shock ve-
locity used in calculations for current mode loading. Adia-
batic temperature rises for ��0.1 were ���33 K, leading
to the very small differences between stresses in columns 4
and 7. Omission of piezoelectricity and electrostriction �col-
umns 5 and 7� likewise has an insignificant effect on the
stress. The axial components of Maxwell’s stress in Eq. �13�
were three or four orders of magnitude smaller than the total
stress T in Z-cut and rotated-cut orientations, and vanish en-
tirely for X-cut specimens. Nonlinear elastic properties, on
the other hand, do appear to be of importance in stress pre-
dictions for compressive strains of magnitudes considered

TABLE IV. Predicted shock response: X-cut ��1̄21̄0�� orientation.

Axial compression

Particle velocity, v
�km/s�

Axial stress magnitude, �T�
�GPa�

� J Open circuit Short circuit �t= t0
−� Breakdown �P̂A=0� Isothermal ��AB=0�

�CAB

�p
= 0

�AB=0

0.01 0.99 0.1245 4.9788 4.9788 4.9837 4.9716 4.9374 4.9787
0.02 0.98 0.2482 9.8882 9.8882 9.8977 9.8739 9.7262 9.8880
0.03 0.97 0.3710 14.7249 14.7249 14.7389 14.7037 14.3677 14.7246
0.04 0.96 0.4928 19.4857 19.4857 19.5039 19.4577 18.8634 19.4850
0.05 0.95 0.6135 24.1673 24.1673 24.1895 24.1327 23.2150 24.1664
0.06 0.94 0.7333 28.7668 28.7668 28.7928 28.7257 27.4238 28.7655
0.07 0.93 0.8519 33.2814 33.2814 33.3110 33.2339 31.4914 33.2796
0.08 0.92 0.9694 37.7081 37.7081 37.7412 37.6544 35.4193 37.7058
0.09 0.91 1.0857 42.0444 42.0444 42.0807 41.9847 39.2088 42.0416
0.10 0.90 1.2008 46.2878 46.2878 46.3271 46.2222 42.8617 46.2844

TABLE V. Predicted shock response: rotated orientation.

Axial compression

Particle velocity, v
�km/s�

Axial stress magnitude, �T�
�GPa�

� J Open circuit Short circuit �t= t0
−� Breakdown �P̂A=0� Isothermal ��AB=0�

�CAB

�p
= 0

�AB=0

0.01 0.99 0.1180 4.4722 4.4697 4.4742 4.4653 4.4309 4.4722
0.02 0.98 0.2354 8.8903 8.8854 8.8942 8.8766 8.7283 8.8903
0.03 0.97 0.3519 13.2507 13.2435 13.2564 13.2304 12.8936 13.2506
0.04 0.96 0.4676 17.5501 17.5406 17.5574 17.5233 16.9281 17.5499
0.05 0.95 0.5825 21.7851 21.7735 21.7940 21.7519 20.8332 21.7847
0.06 0.94 0.6965 25.9526 25.9389 25.9630 25.9132 24.6101 25.9521
0.07 0.93 0.8095 30.0495 30.0339 30.0614 30.0041 28.2603 30.0489
0.08 0.92 0.9215 34.0730 34.0555 34.0861 34.0216 31.7851 34.0721
0.09 0.91 1.0325 38.0201 38.0009 38.0346 37.9630 35.1857 38.0191
0.10 0.90 1.1423 41.8884 41.8674 41.9039 41.8256 38.4637 41.8872
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here. For example, for the Z-cut orientation, the stress of
column 4 is underpredicted by linear elasticity in column 8
by 2% at a strain of 0.03 and by 7% at a strain of 0.1.

Conclusions regarding the importance of material pa-
rameters follow from the assumption that parameters are pre-
cisely known. Experimental uncertainty in elastic and piezo-
electric constants will lead to uncertainty in model
predictions that may overwhelm differences among the re-
sults in columns in Tables III–V. It follows that unless rel-
evant material parameters in Tables I and II are known with
sufficient precision, electromechanical and thermal effects
can be omitted in stress predictions of uniaxial compression
of 6H-SiC so long as the material remains elastic and strains
remain in the range considered here. Nonlinear elasticity ap-
pears important however, as has been noted for other hex-
agonal or trigonal ceramics deformed similarly.21–24 If
fourth-order elastic constants are significant, as has been ob-
served for quartz,23 differences between linear and nonlinear
elastic model predictions could be even greater.

The displacement current predicted in Z-cut quartz under
current mode loading is shown in Fig. 6. The predictions for
the range 1�J0.9 are shown for illustrative purposes,
though dielectric breakdown and/or plastic slip may occur
prior to attainment of the larger compressive strains, e.g., for
J�0.96, with the possibility of breakdown evident in Fig. 4.
Analogous results for X-cut quartz are shown in Fig. 6�b� for
a specimen of the same thickness. Current profiles in Fig.
6�b� were generated by substituting, into Eq. �79�, the strain-
dependent dielectric and piezoelectric coefficients and the
shock velocity versus particle velocity relationship obtained
from impact experiments on quartz by Graham.23 �Graham23

did not publish raw current versus time data for multiple
experiments, so reproduction of the curves shown in Fig.
6�b� using Eq. �79� was necessary to enable comparison with
Fig. 6�a�.� The magnitude of the current predicted for SiC is
significantly greater than that for SiO2 because of the larger
piezoelectric constant and larger wave speed in the former.
The range of compressions in Fig. 6�b� is limited to J
0.96 since inelasticity and dielectric breakdown ensued in
quartz at larger compression.23 Graham and Ingram66 sug-

gested that dislocations affect the conductivity of shock-
loaded quartz; hence correlation between breakdown and the
HEL is plausible.

V. PLASTICITY AND LATTICE DEFECTS

The model of Secs. II and III is extended to address
plasticity and defects in dielectrics. The mechanisms perti-
nent to �-SiC are emphasized; comparisons with experiment
are made to the extent permitted.

A. Kinematics

For crystalline solids with lattice defects, deformation
gradient �1� is decomposed as22,47

FaA = �Axa = Fa�
E �J̄1/3����F�A

P , �84�

where Greek subscripts represent tensor indices referred to a
Cartesian coordinate system in the elastically unloaded inter-
mediate configuration of the body. The thermoelastic defor-
mation is Fa�

E , the isochoric plastic deformation associated

with dislocation glide is F�A
P , and scalar J̄ accounts for vol-

ume changes from point defects73,74 as well as residual elas-
tic volume changes associated with residual stress fields of

dislocations.22,47,74–77 When J̄=1, Eq. �84� reduces to the
usual kinematics of finite plasticity theory.46,78 The plastic
velocity gradient referred to the intermediate configuration
is22,46

L��
P = Ḟ�A

P FA�
P−1 = �

i

�̇is̄�
i m̄�

i , �85�

where �̇i, s̄�
i , and m̄�

i are the slip rate, unit slip direction, and
unit slip plane normal for slip system i. The slip system
geometry is mapped to the current configuration via sa

i

=Fa�
E s̄�

i and ma
i = m̄�

i F�a
E−1. Since s̄�

i m̄�
i =0, L��

P =0 and plastic
deformation is isochoric. The total volume change is

J = det�FaA� = det�Fa�
E �J̄ = JEJ̄ . �86�

Mass density in the intermediate configuration is �̄=�JE

=�0J̄−1. Relations �1�–�18� still apply.
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FIG. 6. Displacement currents: �a� model prediction in shock-loaded Z-cut �-SiC and �b� reproduced using Eq. �79� and strain-dependent dielectric and
piezoelectric coefficients obtained from impact experiments �Ref. 23� on X-cut quartz.
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B. Thermodynamics

For an elastic-plastic dielectric with lattice defects, free
energy �19� is replaced with

� = ��E��
E , p̄�,�, k� , �87�

where finite elastic deformation and strain tensors are, re-
spectively,

C��
E = Fa�

E Fa�
E , E��

E = �C��
E − ����/2. �88�

Polarization, electric field, and electric displacement mapped
to the intermediate configuration are45

p̄� = Fa�
E p̂a, ē� = Fa�

E êa, d̄� = JEF�a
E−1d̂a. �89�

Symbol  k �k=1,2 , . . . ,n� represents scalar defect densities
for n kinds of defects. For example, in Sec. V D,  k is used to
represent dislocations and vacancies in �-SiC. The depen-
dence of free energy on  k accounts for self- and interaction
energies of defects contained within a representative volume
element of defective crystal. Stress power in Eqs. �16� and
�18� can be expressed per intermediate volume as

JE�abLab = P̄a�Ḟa�
E + �

i

	̄i�̇i + �̄J̇̄J̄−1, �90�

with P̄a�=JE�abF�b
E−1, 	̄i=JE�absa

i mb
i a resolved shear stress

on slip system i, and �̄=−JEp with p the Cauchy pressure.
Thermodynamic admissibility is ensured when Eq. �20� ap-
plies and when the following constitutive relationships apply
in lieu of Eqs. �21� and �22�:

�̄�� = JEF�a
E−1�abF�b

E−1 = F�a
E−1P̄a� = �̄

��

�E��
E

+ JEC��
E−1p̄�C��

E−1ē�, �91�

êa = Fa�
E �

��

� p̄�

, ē� = JE−1C��
E �̄

��

� p̄�

. �92�

Multiplying Eq. �18� by JE, the dissipation inequality be-
comes

�
i

	̄i�̇i + �̄J̇̄J̄−1 − �̄�
k

��

� k  ̇
k + JE�−1qa�a�  0. �93�

The first term in Eq. �93� accounts for dissipation from dis-
location glide, the second accounts for dissipation from in-
elastic volume changes, the third for stored energy of de-
fects, and the fourth for heat conduction.

To this point, Sec. V has been general in scope. Specifi-
cally for defective �-SiC, Eq. �27� is replaced with

�0� = �1/2�C����E��
E E��

E + �1/6�C������E��
E E��

E E��
E

+ �1/2����p̄�p̄� + ����p̄�E��
E

+ �1/2������p̄�p̄�E��
E − ���E��

E �� − �0c� ln��/�0�

+ W� k� . �94�

Defect energy per unit reference volume is W. Material co-
efficients with Greek indices in Eq. �94� are defined by re-

placing EAB with E��
E and P̂A with p̄� in Eqs. �28�, �32�, and

�35�. These coefficients have the same numerical values as
those obtained from Tables I and II. In the absence of defects
and inelasticity, W=0, FaA=Fa�

E ��A, and Eq. �94� becomes
identical to Eq. �27�.

C. Inelastic shear: Plastic slip and fracture

Rate equations for dislocation glide in semiconductor
crystals such as SiC can be written as17

�̇i = A	 	̄i

	C
	1/m 	̄i

�	̄i�
exp�− Q

kB�
 , �95�

where A is a positive constant, 	C�0 is the slip resistance
that may vary among different families of slip systems, m
=� ln 	̄i /� ln �̇i is a rate sensitivity, Q is an activation energy,
and kB is the Boltzmann’s constant. Superscript i corre-
sponds to a particular slip system with resolved shear stress
	̄i. Other functional forms of kinetic equations are
possible.16,42,79 In �-SiC, Q may depend on electric current
to account for lowering of the energy barrier to dislocation
migration under bias voltage.5,14

Table VI describes the slip systems and Burgers vectors
in �-SiC. Relevant dislocations in hexagonal polytypes are
partial mixed dislocations on basal planes formed from the
dissociation5,14,16,17,80

1
3 �12̄10� → 1

3 �11̄00� + 1
3 �01̄10� . �96�

Full dislocations on the left of Eq. �96� have b=a and tangent

lines oriented at 60° from �12̄10�, while Shockley partials on
the right have b=a/�3 and tangent lines oriented at 30° and
90° from their respective Burgers vector directions �i.e., a
mixed partial and a pure edge partial�. At ambient tempera-
tures, because of the high Peierls potential in SiC, partials
are predominantly straight.80 Core structures of Shockley
partials on the basal plane may terminate at C or Si atoms;5

the termination type affects the properties of the dislocation,

including core energy and mobility. Full 1 /3�12̄10� disloca-

tions on 
101̄0� prism planes in loop configurations have
been found in specimens subject to indentation at room tem-
perature and could have comparable mobility to straight

TABLE VI. Slip systems, Burgers vectors, and slip plane spacing.

Type Direction Plane Burgers b
b

�nm�
d

�nm�

Basal, full �12̄10� �0001� 1 /3�12̄10� 0.308 0.252

Basal, partial �11̄00� �0001� 1 /3�11̄00� 0.178 0.252

Prism, full �12̄10� 
101̄0� 1 /3�12̄10� 0.308 0.267
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basal plane partials;80 however, much less seems known
about the core structure and energetic properties of these
prismatic dislocations. Merala et al.2 noted that secondary
slip on prism planes may occur in shock-loaded hexagonal
SiC, and this mechanism was considered in the simulations
of Zhang et al.40 At temperatures below 1400 K, partial dis-
locations are favored over full dislocations, with leading par-
tials more mobile than trailing partials in 4H- and
6H-SiC.16,17,80 The trailing partial may not nucleate at all;
hence large numbers of stacking faults are often generated
during slip. Stacking fault energy80 associated with Shockley
partials in Eq. �96� is WSF�2.5 mJ /m2, one to two orders of
magnitude smaller than that typical for metals,81 explaining
the tendency for Eq. �96� to occur. Above 1400 K, plasticity
in �-SiC tends to manifest by collective motion of leading
and trailing partials rather than by leading partials
alone.16,17,80

Measurements of shear strength of 6H-SiC are listed in
Table VII. Values for shocked polycrystals correspond to im-
pact stresses at or above the HEL, where for an isotropic
response, 	=3��T�− p� /4. Also listed are shear stresses re-
quired to enact motion of full basal and prism dislocations
via the Peierls–Nabarro model,82,83 where the critical shear
strength is

	C = 2K̂ exp�− 2!K̂d/��b�� , �97�

with K̂ the energy factor accounting for anisotropic
elasticity5,83 and d the distance between slip planes. In the

isotropic approximation, K̂=� for a screw dislocation and

K̂=� / �1−�� for an edge dislocation. The Peierls model has
been posited as a reasonable estimate for slip resistance in
other ceramics.22,84 Two other estimates, not listed in Table
VII, have been suggested. For slip of partial basal disloca-
tions, Maeda et al.80 suggested a shear strength of WSF /b
�0.014 GPa. Zhang et al.40 proposed shear strengths of 4.3
GPa for full basal dislocations and 7.5 GPa for full prism
dislocations upon comparison of continuum simulations with
data for polycrystalline normal and shear stresses from shock
physics experiments.

Strain rate sensitivity and activation energy for slip of
leading partial dislocations are also listed in Table VII. Ac-
tivation energy Q drops by an order of magnitude in the

presence of a current of magnitude 0.5 A /cm2. Blumenau et
al.5 found an activation energy of 2.1–4.8 eV for slip in
2H-SiC at null bias, with the particular value of Q depending
on dislocation orientation and location of the core at either
Si–Si or C–C bonds. The mobility of C-terminated partials
was found to be higher than that of Si-terminated partials in
2H-SiC. The recombination enhanced dislocation glide
�REDG� mechanism, whereby electronic structures of dislo-
cation cores and stacking faults change as a result of current
injection under forward bias voltage, is thought to influence
the mobility of partial dislocations and hence explain the
reduction in activation energy with current or bias voltage in
cubic and hexagonal polytypes of SiC.5,14,15 As is clear from
Table VIII, at strain �=0.024 corresponding to the HEL in
polycrystals,37 the magnitude of the current—as predicted by
model solutions of Sec. IV—in Z-cut and rotated-cut speci-
mens exceeds that needed to induce the reduction in activa-
tion energy for glide of basal partials, at electric field
strengths lower than those that would induce dielectric
breakdown.67 Thus, it is conceivable that different slip resis-
tances could be observed in single crystals of 6H-SiC loaded
in current mode �e.g., reduced Q due to REDG mechanism�
and voltage mode �e.g., no current and no reduction in Q�.
Experiments are needed, however, to determine if the REDG
mechanism occurs as a result of displacement currents gen-
erated at high pressures, and what effect electric field may
have on dislocation mobility in SiC at high pressures.

Fracture properties are listed in Table IX. A fundamental
quantity considered in failure models for single crystals de-
formed at high pressure is the theoretical shear
strength21,22,85

TABLE VII. Measured or predicted properties for slip or yield.

Parameter Value Dislocation type Definition Ref.

	 5.7
1.3 GPa Unknown Shear strength; shocked polycrystal 37
2.4
1.0 GPa Unknown Shear strength; shocked polycrystal 13

6.8 GPa Unknown Shear strength; static compression 4
4.5
0.4 GPa Unknown Shear strength; indentation 38

	C 1.24 GPa Basal 60° Peierls–Nabarro stress Equation �97�
0.70 GPa Prism edge Peierls–Nabarro stress Equation �97�

m 3.0
0.7 Partial basal Rate sensitivity of yield stress 16

Q 2.5 eV Partial basal Activation energy; null bias 16
0.27 eV Partial basal Activation energy; �I /A�=0.5 A /cm2 14

TABLE VIII. Predicted current and electric field in 6H-SiC at polycrystal-
line HEL ��=0.024�.

Orientation

Current, �I /A�
�A /cm2�

Electric field, �ê�
�MV/cm�t=0+ t= t0

−

Z-cut 1.840 2.086 1.039
Rotated cut 0.624 0.705 0.403
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	C = �b/�2!d� , �98�

with d the spacing between cleavage planes and b the mag-
nitude of Burgers vector of a full dislocation on such planes.
Cohesive energies listed were obtained from indentation.20

Examination of shear stresses predicted in nonlinear
elastic calculations provides insight into possible inelastic
mechanisms that may arise in shock-loaded crystals of
�-SiC. Figure 7 shows the maximum shear stress 	= �Tmax

−Tmin� /2 computed for single crystals of Z-cut, X-cut, and
rotated orientations, where Tmax and Tmin are the maximum
and minimum principal values of stress tensor �49�. The ef-
fects of anisotropy are evident from differences in shear
stress among different orientations. The data from
experiments13,37 on SiC–B are shown for comparison.
Clearly nonlinear elasticity calculations for the single crystal
response do not account for the loss of some, but not all,
shear strength above the HEL observed in polycrystals.13,37

Polycrystals could fail by grain boundary mechanisms not
considered in the single crystal calculations.

Figure 8 shows, versus uniaxial deformation, resolved
shear stress 	̄=max 	̄i among all prism or basal systems
�Table VI�, normalized by the Peierls stress for prism or
basal slip listed in Table VII. Also shown are maximum re-
solved shear stresses on prism and basal planes, normalized
by the theoretical shear strengths of Table IX. Only the re-
sults for X-cut �Fig. 8�a�� and rotated cut �Fig. 8�b�� crystals
are shown. For 
Z-cut specimens loaded in uniaxial strain,
no such slip or fracture mechanisms are active since no shear
stresses act on basal or any prism planes. For X-cut speci-
mens, basal slip and basal plane fracture cannot occur since
no shear stresses act on the basal plane. For the X-cut orien-
tation, prism slip appears likely, and fracture on prism planes

unlikely, since the Peierls stress is exceeded for J�0.995 but
the theoretical stress is never approached, even at J=0.1. For
the rotated orientation, both prism and basal slip are possible
at strains less than the polycrystalline HEL if the Peierls
prediction of shear strength is reasonable. The theoretical
strength is not approached on prism or basal planes in the
rotated orientation, even at J=0.1. In real crystals, however,
fracture could be induced by stress concentrations at pre-
existing or nucleated defects such as �piled-up� sessile
dislocations.79,81

D. Defect energies and volumes

Defect energy W in Eq. �94� is written as a sum of con-
tributions from dislocations, point defects, and stacking
faults

W = �
l

��WE + WC��D� + �
p

�WF"V� + �
r

�WSFAS� . �99�

The first sum applies over l dislocation types with elastic
energy per unit length WE, core energy per unit length WC,
and line density per unit volume �D. The second applies over
p point defect types with formation energy WF and number
density per unit volume "V. The third applies over r kinds of
stacking faults of energy per unit area WSF and area per unit
volume AS. Volume change �v per length L of dislocation
line is calculated as22,74,75
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FIG. 7. Predicted maximum shear stress in �-SiC under voltage mode load-
ing. The data points from Refs. 13 and 37 correspond to impact experiments
on polycrystalline SiC–B.

TABLE IX. Fracture properties.

Plane
Theoretical strength, 	C

�GPa�a
Cohesive energy

�J /m2� b

�0001� 37.7 8.6
0.4


101̄0� 35.6 5.6
0.5


1̄21̄0� 61.8 4.0
0.2

aReference 83.
bReference 20.
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�v/L = �
1

3
�1 − � − 2�2

�1 − ��B
�B� − 1� +

2 − 2� + 2�2

�1 − ���
��� −

�

B
�WE �edge dislocations�

1

�
��� −

�

B
WE �screw dislocations� ,� �100�

where B� and �� are pressure derivatives of bulk and shear
moduli in Table II. Elastic and core energies and predicted
volume changes per unit length of dislocation line are listed
for 6H-SiC in Table X. For edge dislocations, the upper and
lower bounds on B� are considered �Table II� in the calcula-
tion. Volume change for the 90° partial is computed from the
first of �100� for a pure edge dislocation. Volume change for
the edge loop is estimated74 from the first of �100�. An ana-
lytical elasticity solution for volume change from a mixed
60° dislocation is not available, so volume changes com-
puted for both screw and edge dislocations are offered in
Table X as bounds for the 60° dislocation. Core energies
depend on the termination location of the core �C atom or Si
atom� and are on the order of 10% of the elastic energy.5

From Table X, the volume change from full dislocations de-
pends little on B� or orientation �screw versus edge�. Partial
dislocations impart a significantly lower volume change
��1 /3 that of full dislocations� because of their lower line
energy. Predicted volume changes are positive �dislocations
cause expansion�, as observed for a number of other
materials,74,77 and are comparable in magnitude to those
predicted22 in Al2O3. Dislocation density magnitudes �D

�1015 m−2 have been observed2 in shock-loaded �-SiC,
which for full dislocations corresponds to expansion of
�0.0003 and for partials expansion of �0.0001. The former
�0.03% volumetric expansion� would be offset by a pressure
of �0.07 GPa, implicitly affecting stress-strain responses.
These predictions suggest that volume changes imparted by
dislocations are small, but may warrant consideration in high
fidelity equations of state for �-SiC constructed from the
shock data.

Vacancy formation energies for missing C or Si atoms
are listed Table XI, obtained from density functional theory
�DFT� calculations6 conducted elsewhere for conditions in
which equal chemical potentials of C and Si atoms were
specified. Equating the formation energy with the elastic en-
ergy of a spherical point defect in an infinite medium gives
the following approximation for the relaxation volume of a
vacancy,73,86,87 negative in sign since the vacancy causes
contraction of neighboring atoms toward the vacant site

�� = − c̄��3�0WF�/�2���1/2, �101�

where c̄=3�1−�� / �1+��. The net volume change per va-
cancy defect is

�v = �0 + �1 + #���, # = − �1/c̄���� − �/B�

��2WF/�3��0��1/2. �102�

In Eq. �102�, atomic volume �0 accounts for the displaced
atom that formerly occupied the vacant site. Factor # ac-
counts for nonlinear elasticity.73 While relaxation volume
�101� is negative accounting for contraction of neighboring
atoms toward the vacancy, total volume change �102� is posi-
tive in SiC, as shown in Table XI, because of the contribution
of the displaced atom. From Table XI, volumetric expansion
per 1 at. % of missing Si atoms is 0.0034 and per 1 at. % of
missing C atoms is 0.0030. Relations �99�, �100�, and �102�
combine to produce the residual volume change entering
Eqs. �84� and �86� as follows:

J̄ = 1 + �
l

���v/L��D� + �
p

���v�"V� . �103�

VI. CONCLUSIONS

A model has been developed for electromechanical be-
havior of single crystals of 6H-SiC. The model has been used
to predict the response of crystals of various orientations to
planar shock loading under voltage mode and current mode
electrical boundary conditions. Notable results are summa-
rized as follows.

• Anisotropy and nonlinear elastic properties �i.e., third-

TABLE X. Dislocation energies and predicted volume changes
per unit defect length.

Dislocation

Elastic
energy, WE

�nJ/m�a

Volume
change
per unit

length, �v /L �nm2�
Nonlinear
elasticity

Full 60° 21.1 0.278 B�=4.0
0.233 B�=2.5
0.275 ��=2.5 b

Edge loop 18.5 0.244 B�=4.0
0.205 B�=2.5

Partial 90° 7.2 0.095 B�=4.0
0.080 B�=2.5

aReference 5.
bScrew dislocation; volume changes in all other rows assume edge disloca-
tions.

TABLE XI. Vacancy energies and predicted volume changes per defect.

Vacancy
Energy,

WF �eV�a

Relaxation
volume,
�� �Å3�

Net
volume

change, �v �Å3�

C 3.4 �14.28 3.11
Si 5.3 �17.83 3.53

aReference 6.
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order elastic constants or pressure derivatives of
second-order elastic coefficients� can significantly af-
fect the predicted axial stress for uniaxial compressive
strains up to 0.1.

• Thermal expansion, piezoelectricity, and electrostric-
tion have negligible effect on the predicted axial stress
for uniaxial compressive strains up to 0.1.

• The choice of voltage mode or current mode boundary
conditions has a negligible influence on the predicted
axial stress so long as the material remains elastic.

• The displacement current produced during current
mode loading of a Z-cut 6H-SiC specimen exceeds the
displacement current produced in a shocked X-cut
quartz specimen23,68 of the same physical dimensions
and subjected to the same axial strain.

• The electric field generated under current mode load-
ing of a Z-cut 6H-SiC specimen would be sufficient to
induce dielectric breakdown at strains greater than
�0.05, if the ambient breakdown field strength67 ap-
plies at high pressures.

• Displacement currents predicted for current mode
loading of Z-cut and rotated-cut 6H-SiC specimens at
compressions near the polycrystalline HEL exceed
magnitudes of injection current needed to lower the
activation energy barrier for slip of partial dislocations
under ambient conditions.14

• Shear stresses generated during shock loading of X-cut
and rotated-cut specimens appear large enough to in-
duce slip of basal and prism dislocations at strains cor-
responding to the polycrystalline HEL if the Peierls
stress is an accurate measure of slip resistance. Shear
stresses generated do not achieve the theoretical
strength for fracture on basal or prism planes for com-
pressive strains up to 0.1.

• Net volume changes associated with dislocation lines
and vacancies are positive; i.e., defects cause expan-
sion. Volume changes induced by dislocation line den-
sities observed experimentally2 would impart a small
effect on the hydrostatic pressure.

The model developed here can be extended to provide a
more detailed description of defects. Features not incorpo-
rated explicitly include drag stress proportional to dislocation
velocity79 and increasing strength with increasing defect
density.22,46 The effects of dislocation arrangement and ve-
locity on stored energy in the defective crystal, important in
metals deformed at extreme rates,88,89 presumably are of im-
portance in ceramic crystals deformed under similar condi-
tions. The model may serve several purposes in the future.
The model can be used in mesoscale simulations of shock-
loaded polycrystals,40–42,90,91 providing information on the
grain-scale response of �-SiC. Model predictions can also
provide insight into the relative importance of physical
mechanisms incorporated in macroscopic constitutive mod-
els used in ballistics calculations.92,93
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